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Motivation: IV inequalities

Theorem (IV inequalities)

Suppose Z →→ Y
a
, positivity and consistency hold. Then,

P[Y = 0,A = 0 | Z = 0] + P[Y = 1,A = 0 | Z = 1] ↑ 1;

P[Y = 0,A = 1 | Z = 0] + P[Y = 1,A = 1 | Z = 1] ↑ 1;

P[Y = 1,A = 0 | Z = 0] + P[Y = 0,A = 0 | Z = 1] ↑ 1;

P[Y = 1,A = 1 | Z = 0] + P[Y = 0,A = 1 | Z = 1] ↑ 1.

The idea is that the instrumental variable assumptions put constraints on
the joint law p(y , a, z). This is interesting, because , in principle, we can
use these logical bounds to use evaluate the IV assumptions: we can derive
a test of whether the IV assumption Z →→ Y

a holds. If any of the above
inequalities fail, then the core conditions must be violated; however, it is
possible that the core IV conditions are violated without failing the
inequalities.
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Cont

Proof.
For i , j , k ↓ {0, 1},

P[Y a=i = j ]

= P[Y a=i = j | Z = k] bc. (Z →→ Y
a)

= P[Y a=i = j ,A = i | Z = k] + P[Y a=i = j ,A = 1↔ i | Z = k] laws of prob.

= P[Y = j ,A = i | Z = k] + P[Y a=i = j ,A = 1↔ i | Z = k] const.

↑ P[Y = j ,A = i | Z = k] + P[A = 1↔ i | Z = k]

= 1↔ P[Y = 1↔ j ,A = i | Z = k];

Thus

max
k

P[Y = 1,A = i | Z = k] ↑ P[Y a=i = 1]

↑min
k→

1↔ P[Y = 0,X = i | Z = k
→],

where the lower bounds follows by taking j = 0 in the exp. for P[Y a=i = j ]
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According to Pearl

”The instrumental inequality can be used in the detection of undesirable
side- e!ects. Violations of this inequality can be attributed to one of two
possibilities: either there is a direct causal e!ect of the assignment (Z ) on
the response (Y ), unmediated by the treatment (A), or there is a
common causal factor influencing both variables. If the assignment is
carefully randomized, then the latter possibility is ruled out and any
violation of the instrumental inequality (even un- der conditions of
imperfect compliance) can safely be attributed to some direct influence of
the assignment process on subjects’ response (e.g., psychological aversion
to being treated). Alternatively, if one can rule out any direct e!ects of Z
on Y , say through e!ective use of a placebo, then any observed violation
of the instrumental inequality can safely be attributed to spurious
dependence between Z and Y, namely, to selection bias.
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Section 31

Motivation for bounds
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Bounds

Motivation: Can we derive partial identification results (i.e. bounds)
under weaker assumptions (than those imposed so far)?

Anyway are bounds useful? I think the answer is yes.
The following text is from Robins and Greenland:

”Some argue against reporting bounds for nonidentifiable parameters,
because bounds are often so wide as to be useless for making public
health decisions.
But we view the latter problem as a reason for reporting bounds in
conjunction with other analyses: Wide bounds make clear that the
degree to which public health decisions are dependent on merging the
data with strong prior beliefs.
Even when the ITT43 null hypothesis of equality of treatment
arm-specific means is rejected, the bounds may appropriately include
zero. If treatment benefits some subjects and harms others, the ATE
parameter may be zero even though both the sharp and ITT null
hypotheses are false.

43say, the e!ect of Z in our considerations.
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According to Pearl

When conditions for identification are not met, the best one can do is
derive bounds for the quantities of interest—namely, a range of possible
values that represents our ignorance about the data-generating process
and that cannot be improved with increasing sample size.

Mats Stensrud Randomisation and Causation Spring 2025 332 / 419



Bounds on the ATE

E[Y 1 ↔ Y
0] = E[Y 1]↔ E[Y 0] can be decomposed as

1∑

a=0

E
[
Y

1 | A = a
]
P[A = a]↔

1∑

a=0

E
[
Y

0 | A = a
]
P[A = a]. (10)

E[Y a | A = a] = E[Y | A = a] by consistency.

E[Y a | A = a] and P[A = a] are identifiable and can be consistently
estimated by their empirical counterparts.

the observed data provide no information about E[Y a | A = 1↔ a],
such that (10) is only partially identifiable without additional
assumptions (such as exchangeability).
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Bounds on the ATE

E[Y 1 ↔ Y
0] is bounded by smallest and largest possible values for

E[Y a | A = 1↔ a].

If Y 1 and Y
0 are not bounded then bounds on E[Y 1 ↔ Y

0] will be
ranging from ↔↗ to ↗.

Informative bounds are only possible if Y 0 and Y
1 are bounded.

Because any bounded variable can be rescaled to take values in the
unit interval, without loss of generality assume Y

a ↓ [0, 1] for
a = 0, 1. Then 0 ↑ E[Y a | A = 1↔ a] ↑ 1 and from (10) it follows
that E[Y 1 ↔ Y

0] is bounded below by setting E[Y 1 | A = 0] = 0 and
E[Y 0 | A = 1] = 1, which yields the lower bound

E
[
Y

1 | A = 1
]
P[A = 1]↔ E

[
Y

0 | A = 0
]
P[A = 0]↔ P[A = 1].

Similarly, E[Y 1 ↔ Y
0] is bounded above by setting E[Y 1 | A = 0] = 1

and E[Y 0 | A = 1] = 0, which yields the upper bound

E
[
Y

1 | A = 1
]
P[A = 1]↔ E

[
Y

0 | A = 0
]
P[A = 0] + P[A = 0].
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Width of bounds

Determining treatment e!ect bounds can be viewed as a constrained
optimization problem. The assumptions we make, for example
exchangeabilities, determine the constraints.

The bounds from the previous slide have width 1 and are contained in
[↔1, 1], and are called the Manski-Robins bounds.
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Motivating example 2: bounds

We will consider a setting where Z ,A,Y are all binary. This could for
example be plausible in a randomized controlled trial, where

Z is treatment assignment
A is the treatment taken
Y is the outcome

In our motivation, we will assume no defiers.

What do we know about the average treatment e!ect?
We will explore this (and build some intuition) in the next slides.
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Motivating example 2 (cont.): always-takers

Suppose we consider an IV setting with monotonicitiy (no defiers).

Then we can simply identify always-takers by A
z=0 = 1.

The fraction of always-takers is P(A = 1 | Z = 0)
E(Y a=1 | A = 1,Z = 0) = E(Y | A = 1,Z = 0)
= E(Y | Az=0 = 1,Az=1 = 1).
E(Y a=1 ↔ Y

a=0 | A = 1,Z = 0) ↑ E(Y | A = 1,Z = 0)
with equality when all always-takers have Y

a=0 = 0.
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Motivating example 2 (cont.): never-takers

Suppose monotonicitiy (no defiers).

Then we can simply identify never-takers by A
z=1 = 0.

The fraction of never-takers is P(A = 0 | Z = 1)
E(Y a=0 | A = 0,Z = 1) = E(Y | A = 0,Z = 1) = E(Y | Az=0 =
0,Az=1 = 0).
E(Y a=1 ↔ Y

a=0 | A = 0,Z = 1) ↑ 1↔ E(Y a=0 | A = 0,Z = 1)
with equality when all never-takers have Y

a=1 = 1.
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Suppose no e!ect in compliers

Combine the simple results from the two previous slides to gain some
insight:

Suppose monotonicitiy (no defiers).

Suppose no e!ect in compliers =↘ E(Y z=1 = Y
z=0) = 0, in other

words no intention to treat e!ect (ITT). Think about it, if it isn’t clear!
Then the maximum possilbe e!ect of actually taking treatment is

E(Y a=1 ↔ Y
a=0)

↑E(Y a=1 | A = 1,Z = 0)P(A = 1 | Z = 0)

+ [1↔ E(Y a=0 | A = 0,Z = 1)]P(A = 0 | Z = 1),

even if the intention to treat (ITT) e!ect E(Y z=1 = Y
z=0) = 0.

Thus, even if the ITT e!ect is zero, there could be considerable causal
e!ects of taking treatment. In other words, even if the ITT is null, the
ATE can be nonzero, which seriously complicate the interpretation of
hypothesis tests of the ITT in settings with (a substantial amount of)
noncompliance.
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Section 32

Finite sample inference
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Finite sample inference: Where does randomness come
from?

We have considered superpopulation inference, where the randomness
comes from the fact that we have a random draw from a
superpopulation.

However, in a randomised trial, we do not necessarily need to consider
a superpopulation at all.

In the (simple) setting of an experiment, we can often do finite

sample, or randomization-based, inference.

Yet, we shall see that to generalize the results outside of the study –
which is really what researcher would like to do in most settings – it is
necessary to consider large sample extensions (which fundamentally
ends up being superpopulations).
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Superpopulation inference and finite sample inference

We have suppose that our study population is sampled at random from an
(essentially) infinite superpopulation, sometimes referred to as the target
population.

Broadly speaking, we aimed to generalize our results to this superpopulation.

It is possible to take a di!erent point of view in randomised trials, often
called ”design-based inference”, which we will study now. This does not
require the consideration of a superpopulation at all.44

Definition (Design-based inference)

Inference is drawn from a finite population, where the potential outcomes of the
experimental units are fixed and the randomness comes solely from the treatment
assignment.

44However, to generalize results from finite samples to settings outside of the
experiment – even if we start in the design based setting – it is di”cult to proceed
without consider a target (super)population. Thus, if we are interested in using the
results from the trials for decisions (or rigorous reasoning more broadly) outside of the
experiment, it seems that we need to rely on superpopulation inference anyway.
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Notation

We have a sample of n individuals

As before, for each individual i , let Ai , Li ,Yi be treatment, baseline
covariates and outcomes, respectively.

We use bold symbols to denote n-vectors:
A = (A1, . . . ,An),
L = (L1, . . . , Ln),
Y = (Y1, . . . ,Yn).

We will consider settings where A is randomly assigned. Thus, for a
binary A there are 2n possible values of A. Define A = {0, 1}n.
Let A+ denote the set of vectors a (i.e. realizations of A), with
positive probability under a particular experimental design.
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Fisher’s Randomisation inference

Key idea: do inference based solely on the assignment mechanism.

The counterfactuals Y a=1

i ,Y a=0

i are considered to be fixed variables.

All the randomness comes from the random assignment of A.

Fisher’s aim was to test the sharp null hypothesis using the so-called
exact test.

The idea is basically a stochastic proof by contradiction...

Fisher’s null hypothesis is H0 : Y a=1

i ≃ Y
a=0

i for all i ↓ {1, 2, . . . , n}.
In words, the treatment has no e!ect of the outcomes in no individual.
Under the null hypothesis, Y a=1

i = Y
a=0

i = Yi , but of course this is
not true under the alternative.

This null hypothesis is called a sharp null hypothesis; it holds for
every individual

it allows the researcher to fill in a hypothetical value for each unit’s
missing counterfactual outcome
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Fisher’s exact test: A test of individual e!ects

Define the sharp null hypothesis H0 : Y a=1

i = Y
a=0

i for all i ↓ {1, 2, . . . , n}.

Define a test statistic45, S ≃ S(Y ,A,L), e.g.
S
di! = 1

n1

∑
i :Ai=1

Yi ↔ 1

n0

∑
i :Ai=0

Yi .

Let s→ be an observed test statistic. Then P(S ⇐ s
→) is a p-value, where the

probability is under the law that describes the null hypothesis.

Fisher suggested an exact test.

The idea is to ask the following question: How unusual or extreme is
the observed statistic (say, absolute di!erence), assuming that the null
hypothesis is true?

Intuitively, we want to have power against alternative hypotheses, but this is
somehow complicated because there are many alternative hypotheses. It
seems reasonable to have good power against alternative hypotheses that
are substantively most interesting.

45A statistic is a known, real-valued function of the data (here, Y ,A, L)
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Examples of statistics

Averages (like above)

Trimmed means

Quantiles (medians)

T-statistics

Rank statistics (perhaps good when heavy-tailed distributions)

One example is the Kolmogorov-Smirnov Statistic. Define, the empirical
distributions

F̂a=1(y) =
1

n1

∑

i :Ai=1

I (Yi ↑ y) F̂a=0(y) =
1

n0

∑

i :Ai=1

I (Yi ↑ y).

The Kolmogorov-Smirnov Statistic is

S
ks = sup

y
|F̂a=1(y)↔ F̂a=0(y)| = max

i
|F̂a=1(Yi )↔ F̂a=0(Yi )|.
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We can combine statistics

Fisher’s exact p-value inference is valid when there is one test statistic
and one null hypothesis.

However, we can combine test statistics.
Consider two statistics S1 and S

2.
The combine S

comb = g(S1, S2). (e.g. Scomb = max(S1, S2) )
Then we can calculate a p-value

P(Scomb ↑ s
ω,comb)
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Illustration of Fisher’s exact test

Under the sharp H0, we can impute missing values of the counterfactuals

i Y
a=1

i Y
a=0

i Ai Yi

1 ↔5 -5 1 -5
2 6 6 0 6
3 8 8 1 8
4 0 0 0 0

Table 2: Fisher’s idea
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The idea is resampling without replacement

Consider the estimator 1

n1

∑
i :Ai=1

Yi ↔ 1

n0

∑
i :Ai=0

Yi . Because we have a

completely randomised experiment, the following
(
4

2

)
= 6 scenarios are

equally possible under H0,

A = (1, 1, 0, 0), ω̂ =
↔5 + 6↔ 8↔ 0

2
= ↔3.5

A = (1, 0, 1, 0), ω̂ =
↔5↔ 6 + 8↔ 0

2
= ↔1.5

A = (1, 0, 0, 1), ω̂ =
↔5↔ 6↔ 8 + 0

2
= ↔9.5

A = (0, 1, 1, 0), ω̂ =
5 + 6 + 8↔ 0

2
= 9.5

A = (0, 1, 0, 1), ω̂ =
5 + 6↔ 8 + 0

2
= 1.5

A = (0, 0, 1, 1), ω̂ =
5↔ 6 + 8 + 0

2
= 3.5
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One way of explaining Fisher’s exact test

1 Do the randomization.

2 Calculate a statistic S = S(Y ,A, L), a function of the observed data.

3 Under the assumption of H0, i.e. no individual level causal e!ect, fill
in missing potential outcomes.

4 Under the assumption of H0, generate many hypothetical replications
of the randomization, and in each of which calculate a statistic
Srep = Srep(Y ,A, L)

5 Compare S with the values Srep

This is an example of a permutation test.

Mats Stensrud Randomisation and Causation Spring 2025 350 / 419



More formally

Define H0 : Y a=1

i = Y
a=0

i .

Now, consider the randomisation distribution of two statistics S

Define F = (Y 0,Y 1). In this case, the randomization distributions of
S = S(A,Y ,L) is

F (s) = P(S ↑ s | F)

Then the one-sided p-value of observing the same value or more extreme of
the observed statistics S is F (S).

In our example, the one-sided p-value is 1↔ F (↔1.5) = 1↔ 0.5.
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Fisher’s randomization test formally

Theorem (Nominal coverage of the exact test)

Under consistency and H0, P(F (S) ↑ ε | F) ↑ ε for all ε ↓ (0, 1).

Proof.
This follows from some basic properties of the distribution function:
indeed, F→1(ε) = sup{s : F (s) ↑ ε}. Also F (s) is non-decreasing and
right-continuous and therefore

P(F (S) ↑ ε) = P(S < F
→1(ε)) = lim

s↑F→1(ω)
P(S ↑ s) ↑ ε.

PS: you may have seen the probability integral transform before, i.e. if X is
continuous, then Z = F (X ) ⇒ U(0, 1)

P(F (X ) ↑ ε) = P(X ↑ F
↑1(ε)) = F (F↑1(ε)) = ε.
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Remark on the proof and randomness

We only use randomization to compute the p-values because, by definition
of the statistic S , whose randomness is due to A, we have that

F (s) = P(S ↑ s | F) =
∑

a↓A
P(A = a | F)I (S ↑ s)

and P(A = a | F) = P(A = a) by design, i.e., by the randomisation
scheme.
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Conservative or good?

Conservative does not necessarily mean appropriate. Consider a confidence
interval formed by stating that a random 95% of the time, the interval is
any positive or negative number, and that 5% of the time, the interval is
the number 0. Such an interval would cover the true value of any quantity
of interest at least 95% of the time, and thus would also be a
“conservative” interval. It would not, however, be of any use....
Guido W Imbens and Donald B Rubin. Causal inference in statistics,

social, and biomedical sciences. Cambridge University Press, 2015
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Checking for no causal e!ect (hypothesis testing)

Suppose we want to check if there is no causal e!ect.

A classical frequentist approach goes as follows
Assume no e!ect (the null hypothesis).
Calculate a statistic,46 and see how surprising the statistics is, under
the assumption of no e!ect.
If it is very surprising, we reject.

This is contrapositive logic, applied to probabilities.

46A statistic is a known, real-valued function of the data
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We should be careful with this (Example from Shpitser)

Suppose we do cancer screening.

Consider a rare cancer, our outcome Y , such that P(Y = 1) = 0.0001

Consider also a cancer lab test T . And suppose
Test false positive P(T = 1 | Y = 0) = 0.01.
Test false negative P(T = 0 | Y = 1) = 0.001.

Suppose we had a positive test, T = 1. Should we worry?

Just use Bayes theorem,

P(Y = 1 | T = 1) =
P(T = 1 | Y = 1)P(Y = 1)

P(T = 1)
⇑ 0.01.

What would the Frequentist do? Assume Y = 0, and check how
surprised we would be, that is, calculate P(T = 1 | Y = 0) = 0.01,
which is surprising....

Lesson learned, if hypothesis probabilities are uneven, hypothesis
testing might not be ideal..
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